муниципальное бюджетное общеобразовательное учреждение «Школа № 12 имени Героя Советского Союза Ф.М. Сафонова» городского округа Самара

Российская Федерация, 443041, г. Самара, ул. Красноармейская, 93-А Тел./ факс: (846) 332-45-46; e-mail: <u>inform 12 @mail.ru</u>

«PACCMOTPEHO»

Протокол заседания МО учителей ЧЧ

от «28» августа 2018 г. № 1

Председатель MO R Meley of

«СОГЛАСОВАНО»

Протокол заседания МС школы от «29» августа 2018г.№ 1

Зам. директора по YBP May

«УТВЕРЖДЕНО»

Директор школы

Горячева Приказ по школе

от В августа 2018г

Рабочая программа

основного общего образования

по предмету «Математика»

5-6 классы

Составили:

учитель математики высшей категории Швецова И.В. учитель математики высшей категории Смирнова И.А.

Учебник: Математика, Виленкин Н.Я., Жохов В.И. Чесноков А.С., Шварцбурд С.И.,ООО «ИОЦ МНЕМОЗИНА»,2017г

> Самара 2018

Пояснительная записка

Рабочие программы основного общего образования по математике для 5—6 классов составлены на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных В Федеральном государственном образовательном стандарте общего образования. В них также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.

Сознательное овладение учащимися системой арифметических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса математики 5—6 классов обусловлена тем, что объектом изучения служат количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика — язык науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Арифметика яааяется одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении математике в 5—6 классах способствует усвоению предметов гуманитарного цикла. Практические умения и навыки арифметического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении арифметических абстракций, о соотношении реального и идеального, о характере отражения математической наукой явлений и процессов реального мира, о месте арифметики в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности воображения, арифметика развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Активное использование и решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.

Изучение математики в 5—6 классах позволяет формировать умения и навыки умственного труда: планирование своей работы, поиск

рациональных путей её выполнения, критическую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобретают навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса арифметики является развитие учащихся. Сами объекты логического мышления математических умозаключений и принятые в арифметике правила их конструирования формированию умений обосновывать способствуют доказывать чёткие определения, суждения, приводить развивают логическую интуицию, кратко наглядно раскрывают механизм логических И построений и учат их применению. Показывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, арифметика вносит значительный вклад в эстетическое воспитание учащихся.

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА МАТЕМАТИКИ В 5-6 КЛАССАХ

В курсе математики 5—6 классов можно выделить следующие основные содержательные линии: арифметика; элементы алгебры; вероятность и статистика; наглядная геометрия. Наряду с этим в содержание включены две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно-методи-ческую пронизывающую все основные содержательные линии. При этом первая линия — «Множества» — служит цели овладения учащимися некоторыми универсального математического языка, элементами вторая «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание ЛИНИИ «Арифметика» служит фундаментом ДЛЯ дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.

Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.

Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы формирования

правильной геометрической речи, развивает образное мышление и пространственные представления.

Линия «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении вероятности и статистики обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ

Базисный учебный (образовательный) план на изучение математики в 5—6 классах основной школы отводит 5 часов в неделю в течение каждого года обучения, всего 170 уроков. Учебное время может быть увеличено до 6 часов в неделю за счёт вариативной части Базисного плана.

ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:

личностные:

- 1) ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- 2) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
- 3) умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- 4) первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

- 5) критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 6) креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
- 7) умения контролировать процесс и результат учебной математической деятельности;
- 8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

- 1) способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 2) умения осуществлять контроль по образцу и вносить необходимые коррективы;
- 3) способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- 4) умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
- 5) умения создавать, применять и преобразовывать зна-ковосимволические средства, модели и схемы для решения учебных и познавательных задач;
- 6) развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить обшее решение и разрешать конфликты на основе согласования позиций и учёта интересов: слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- 7) формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- 8) первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
- 9) развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
- 10) умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- 11) умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

- 12) умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
- 13) понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
- 14) умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 15) способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; *предметные*:
- 1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
- 2) или лепи и битным понятийным аппаратом: иметь представление о числе, дроби, процентах, об осноинмх геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
- 3) умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
 - 4) умения пользоваться изученными математическими формулами;
- 5) знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
- 6) умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

СОДЕРЖАНИЕ КУРСА АРИФМЕТИКА

Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Понятие о степени с натуральным показателем. Квадрат и куб числа. Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами. Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными

дробями. Нахождение части от целого и целого по его части. Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Отношение. Пропорция;

Gciiohiicmснойстно пропорции. Пропеты; нахождение про центом оівеличины и величины по ей процентам; выражение отношении и процентах. Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой: геометрическая интерпретация модуля числа. Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий.

Измерения, приближения, оценки. Зависимости между величинами. Единицы измерения длины, площади, объёма, массы, времени, скорости. Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам. Решение текстовых задач арифметическими способами.

ЭЛЕМЕНТЫ АЛГЕБРЫ

Использование букв для обозначения чисел; для записи свойств арифметических действий. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий. Декартовы координаты на плоскости. Построение точки по её координатам, определение координат точки на плоскости.

ОПИСАТЕЛЬНАЯ СТАТИСТИКА. ВЕРОЯТНОСТЬ. КОМБИНАТОРИКА. МНОЖЕСТВА

Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. Решение комбинаторных задач перебором вариантов. Множество, элемент множества. Пустое множество. Подмножество. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Вен на.

НАГЛЯДНАЯ ГЕОМЕТРИЯ

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырёхугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины. Угол. Виды углов. Градусная мера угла. Измерение и построение углов с

помощью транспортира. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Равновеликие фигуры. пространственных Наглядные представления 0 фигурах: параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, многогранники. Примеры правильные развёрток многогранников, цилиндра и конуса. Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ¹

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА МАТЕМАТИКИ В 5-6 КЛАССАХ

Рациональные числа

Ученик научится:

- 1) понимать особенности десятичной системы счисления;
- 2) владеть понятиями, связанными с делимостью натуральных чисел;
- 3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
 - 4) сравнивать и упорядочивать рациональные числа;
- 5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
- 6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Ученик получит возможность:

- 1) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- 2) углубить и развить представления о натуральных числах и свойствах делимости;

8

¹ Содержание раздела вводится по мере изучения других вопросов.

3) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Ученик научится:

использовать начальные представления о множестве действительных чисел.

Ученик получит возможность:

- 1) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
- 2) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Ученик научится:

использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

- 1) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
- 2) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Наглядная геометрия

Ученик научится:

- 1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- 2) распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
 - 3) строить развёртки куба и прямоугольного параллелепипеда;
- 4) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
 - 5) вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

- 1) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
- 2) углубить и развить представления о пространственных геометрических фигурах;
 - 3) применять понятие развёртки для выполнения практических расчётов.

ПРИМЕРНОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тематическое планирование реализует один из возможных подходов к распределению изучаемого материала по учебно- методическим комплектам по математике, выпускаемым издательством «Просвещение», а также УМК Н. Я. Виленкина, В. И. Жохова и др., не носит обязательного характера и не исключает возможностей иного распределения содержания.

В примерном тематическом планировании разделы основного содержания по математике разбиты на темы в хронологии их изучения, по соответствующим учебникам.

Особенностью примерного тематического планирования является то, что в нём содержится описание возможных видов деятельности учащихся в процессе усвоения соответствующего содержания, направленных на достижение поставленных целей обучения. Это ориентирует учителя на усиление деятель-ностного подхода в обучении, на организацию разнообразной учебной деятельности, отвечающей современным психолого- педагогическим воззрениям, на использование современных технологий.

Тематическое планирование представлено в двух вариантах. *Первый вариант* составлен из расчёта часов, указанных в проекте Базисного учебного (образовательного) плана (БУП) образовательных учреждений общего образования (не менее 5 часов в неделю. 170 часов в год). При составлении рабочей программы образовательное учреждение может увеличить указанное в проекте БУП минимальное учебное время за счёт его вариативного компонента.

4) Второй примерного планирования вариант тематического предназначен нацеленных повышенный уровень ДЛЯ классов, на математической подготовки учащихся. В этом случае в основное программное содержание включаются дополнительные вопросы, способствующие развитию математического кругозора, освоению более продвинутого математического аппарата, математических способностей. Расширение содержания математического образования в этом случае даёт возможность существенно обогатить круг решаемых математических задач. При работе по второму варианту примерного тематического планирования на изучение математики рекомендуется отводить не менее 6 часов в неделю. Учебные часы, приведённые в примерном тематическом планировании, даны в минимальном объёме (из расчёта 6 часов в неделю, 204 часа в год).